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Abstract

A micromechanical model for excitation of waves resulting from ®ber fracture and matrix cracking in laminated
beams is presented. The source is described as a time dependent displacement discontinuity and the wave

propagation in the beam is modeled by a higher-order beam theory. The equations of motion de®ned by the beam
model are then formally solved by employing integral transforms. Asymptotically valid solutions are subsequently
found using residue calculus and the stationary phase method. As an example, a [90/02/90] beam with a width to

thickness ratio of 10 is considered. The dispersion curves resulting from the beam theory and three-dimensional
®nite element computations are compared and a maximum frequency for applicability of the beam theory is
determined. The time response from ®ber fracture and transverse matrix cracking is presented. The applications of

the results to the analysis of acoustic emission experiments are also discussed. 7 2000 Elsevier Science Ltd. All
rights reserved.
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1. Introduction

Damage properties of laminated composites are often found by uniaxial testing, see for example

Gorman and Ziola (1991), Prosser et al. (1995) and Adolfsson and Gudmundson (1999). Important

processes which precede specimen failure are matrix cracking and ®ber fracture. These damage processes

emit stress waves which can be used for localization, identi®cation and quanti®cation of damage

provided one has an understanding of the wave ®eld that develops in the specimen. It is thus interesting

to model the wave ®elds created by matrix cracks and ®ber fractures in thin laminated beams or bar-like
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specimens (hereafter collected under the term beam). The modeling can be divided into two basic parts.
The ®rst part is concerned with modeling of the damage event, i.e. the source. The second part is wave
propagation in the beam-like specimen.

If the damage may be viewed as a displacement discontinuity, Burridge and Knopo� (1964) have
shown how it may be replaced by equivalent volume forces that cause an identical wave ®eld in the
body. If the source is highly localized, i.e. the size of the source is much smaller than typical dimensions
of the body and the considered wavelength, then, the geometry of the source and the displacement
discontinuity are often collected in a so-called moment tensor, see for example the work by Rice (1980).
The concept of moment tensors has been used with success in studies of micro cracking in di�erent
materials among others by Chang and Sachse (1986), Landis and Shah (1993), Ohtsu (1995), Guo (1996)
and Guo et al. (1996). If the conditions for using the moment tensor are not met, one has to use the
volume force in its full form. Gudmundson (1998), for example, has used this to study the radiation
from a growing crack in a plate. In the present work, matrix cracking will be modeled as a time-
dependent volume force con®ned to a line, and ®ber fracture as a time-dependent moment tensor. Once
volume forces due to the sources are known, the wave propagation must be addressed.

Wave propagation in elastic waveguides is complicated by the large number of re¯ections from the
boundaries, or looking at a larger length-scale, by the fact that wave propagation is dispersive.
Ceranoglu and Pao (1981) have studied wave ®elds from point sources in homogeneous isotropic plates
by using the Green's function of a force in an unbounded solid. The response at a certain point is
calculated by superposing re¯ections from the boundaries that reach the observation point. Because the
number of re¯ections increase drastically with distance from the source, it is in practice only possible to
consider points close to the source using this method. Vasudevan and Mal (1985) have also looked at
wave ®elds from point sources in homogeneous isotropic plates. Integral transforms and numerical
inversion are used and results for larger source-receiver distances are presented. Mal and Lih (1992)
have studied dissipative unidirectional composite plates. Integral transforms in the in-plane variables
and time are also used in that work. The transformed solution, which is a function of transform
variables and the thickness coordinate, is inverted numerically. Laminated plates subjected to line loads
have been considered by Green (1995). Integral transforms are used and the inversion is done
numerically. Results for fairly large distances between load line and receiving point are presented.

A common feature in the investigations mentioned above is that the thickness coordinate in the plate
appears explicitly. But, if the in-plane distances are much larger than the thickness of the plate, a
homogenization in the thickness variable can be performed, i.e. a plate theory may be used. Lih and
Mal (1995) have compared wave ®elds resulting from the use of a ®rst-order transverse shear
deformation plate theory due to Whitney and Pagano (1970) with the three-dimensional solution, and
their conclusion is that good results can be achieved for large source-receiver distances and low
frequencies.

Guo (1996) has used the ®rst-order transverse shear deformation plate theory to study the ¯exural
waves from matrix cracking, ®ber fracture and other types of damage. Integral transforms are used in
this work, but instead of using numerical inversion, residue-calculus and the stationary phase method
are used to get an approximate spectrum, which is inverted to a time-signal by the use of FFT. The
same kind of analysis and a theory for extension of plates, which takes lateral contraction into account,
is used to study the extensional wave.

Flexural wave propagation in beams can be modeled using the Timoshenko beam theory. This is
e�ectively the same as Whitney's plate theory if only wave propagation in one direction is considered,
and instead of plane-strain sti�nesses, plane-stress sti�nesses perpendicular to that direction of
propagation is used. Thus, the width of the beam never enters explicitly in the equations of motion and
the range of validity, in frequency or wavelength, of the equations is uncertain.

Extension waves in bars with a homogeneous rectangular cross-section have been investigated by
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Medick (1968). The displacement, stress and strain ®elds are expanded in Legendre polynomials with
coe�cients depending on the coordinate along the bar and time. A variation principle and truncation of
the series are then used to generate a set of equations of motion, compatibility equations and
constitutive relations as well as boundary and initial conditions. Muller and Touratier (1981) use a
similar approach but allow for transversely isotropic materials. In both cases dispersion curves are
presented and adjustment parameters (or correction factors) are introduced to ®t certain points on the
dispersion curves to known exact values.

Propagation of axially symmetric waves in semi-in®nite laminated cylinders due to a tone burst at the
end has been studied by Kohl et al. (1992). The displacements are expressed in frequency domain by a
modal sum, and a tailor-made ®nite element code is used to compute the modal forms at a given
frequency. The inversion to time domain is done using FFT.

In the present work, approximate equations of motion for symmetric cross-ply laminated composite
uniaxial test specimens are derived using Hamilton's principle and assumed cross-section displacement
®elds. The equations of motion are then solved by Fourier transformation and approximate inversion
using residue calculus and the stationary phase method.

2. Modeling of the sources

A laminate and a Cartesian coordinate system according to Fig. 1 is considered. The laminate is made
of transversely isotropic plies. It is in®nite in the 1-direction and bounded by free surfaces at x2=2b
and x3=2h. In modeling the sources, it is for simplicity assumed that the damage occurs in plies with
the symmetry directions along the 1- or 2-direction, respectively (08- and 908-plies).

2.1. Matrix cracking

If the laminate under consideration is strained in the 1-direction, the ®rst damage that typically
appears is matrix cracking in the 908-layers. It is often, if not always, found that the cracks will initiate
at one of the edges and then propagate across the width of the specimen or stop within it, Prosser et al.
(1995).

Consider a matrix crack at x1=0 growing in the 2-direction. In the proceeding analysis, only
wavelengths much larger than the ply thickness will be considered. For a dynamically growing matrix

Fig. 1. De®nition of the coordinate system used and geometry of the laminated beam.
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crack, it can be assumed that a steady state crack opening will develop at a distance of the order of a
few ply thicknesses behind the crack tip. Thus, if short wavelength information in the solution is
ignored, the crack-opening displacement in the 1-direction may be expressed as

Du1�x2, x3, t� � Dustat�x3�Jm�x2, t�, �1�
where Du stat is the static crack-opening displacement of a crack in a laminate of in®nite width subjected
to the same strain in the 1-direction and to generalized plane strain in the 2-direction. The function Jm
may within the same order of long wavelength approximation be expressed as

Jm�x2, t� �
8<: 0 t < 0
H�ÿx2 ÿ b� vt� 0Rt < 2b=v
1 2b=vRt

, �2�

where H is the Heaviside step-function. On a global scale it is a reasonable model of a crack growing
across the entire width of the laminate with an average velocity, v. The crack-opening displacement may
alternatively be viewed as a displacement discontinuity in the 1-direction. Using the work by Burridge
and Knopo� (1964), it can be expressed by equivalent volume forces, fi. The result in this case is

fi � ÿC T
11ij

@

@xj
�Jm�x2, t�Dustat�x3�d�x1��, �3�

where d is the Dirac delta-function and C T
ijkl is the sti�ness tensor of the 908-ply containing the crack.

The function Du stat has to be known in order to evaluate the expression in Eq. (3). One possible method
is to perform ®nite element computations on a two-dimensional plane-strain model representing the
cracked laminate and then ®t a polynomial to the resulting crack-opening. Here an alternative method
will be used.

Gudmundson and Zang (1993) have proposed a method to compute the sti�ness-loss of a composite
laminate containing matrix cracks. This is based on the assumption that the crack opening is mainly
in¯uenced by the state in the cracked ply, and that the rest of the plies have negligible direct in¯uence
on the crack-opening. This method has been found to yield very good sti�ness-loss estimations,
Adolfsson and Gudmundson (1995). With this in mind, the opening of an internal matrix crack can be
approximated using the opening of a crack in an in®nite plate under plane-strain, and the opening of a
surface crack can be approximated by the opening of an edge crack in a semi-in®nite plate under plane-
strain. Expressions for these crack-openings may be found in the book by Wu and Carlsson (1991).
Please note that, within the scope of the approximation, the anisotropy of the plies presents no problem
since the material is isotropic in the plane of the crack. Once Du stat is known, the volume forces
according to Eq. (3) can be calculated.

2.2. Fiber fracture

Further straining of the specimen will among other types of damage cause ®ber fracture. Whereas
matrix cracking is hardly localized to a point in uniaxial test, ®ber fracture approximately is. Here a
®ber fracture located at x1=0, x2=bf and x3=hf within a 08-ply is considered. The volume force can in
this case be expressed in terms of a moment of tensor as

fi � ÿMij�t� @
@xj
�d�x1�d�x2 ÿ bf �d�x3 ÿ hf ��: �4�

The moment tensor, Mij, is given by
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Mij�t� � �ustatJf�t�r2pC f
ij11, �5�

where u- stat is the average separation between the broken ®ber ends under static loading, C f
ijkl the

sti�ness tensor of the ®ber and r the radius of the ®ber. The time dependence is assumed to have the
form

Jf�t� �
�
t=t 0 < t < t
1 t < t

: �6�

This means that the average separation increases linearly during a time period of length t to the value it
would have in the static case.

The value of u- stat can be estimated in di�erent ways. One possibility is to make an axisymmetric ®nite
element model of the ®ber and the surrounding matrix imbedded in a material having the material
properties of the ply. Another possibility is to use the work of Case and Reifsnider (1996). In that case
an integral equation has to be solved numerically.

Here, the simpler estimate due to Cox will be used, see Gibson (1994). Using Cox's model and letting
the ®ber length approach in®nity, the separation of the ®ber ends becomes

�ustat � �E1r

���������������������������
Ef ln�1=Vf �

Gm

s
, �7�

where �E1 is the strain in the 1-direction of the ply, r the radius of the ®ber, Ef the elastic modulus of the
®ber, Vf the ®ber volume fraction and Gm the shear modulus of the matrix material.

3. Laminated beam models

Eqs. (3) and (4) de®ne the sources considered in this work. Now wave propagation in the beam has to
be addressed. The propagation of waves in laminated beam-like structures are complicated by re¯ections
from boundaries. For wavelengths and distances larger than the dimensions of the cross-section,
however, a beam model can often be used with success.

Consider a laminated beam loaded by volume forces fi. In order to derive a beam model, i.e. to
homogenize over the 2- and 3-directions, the displacements, ui, are expressed in terms of Legendre
polynomials,

ui�xj, t� �
X1
n�0

X1
m�0

Pn

�
x2

b

�
Pm

�
x3

h

�
u
�n, m�
i �x1, t�, �9�

where Pn is the Legendre polynomial of degree n. The next step is to truncate the series and use
Hamilton's principle to generate equations of motion. Re¯ections from the ends of the specimen will not
be considered in this work, and therefore, boundary conditions for the functions u

�n, m�
i are not

presented.
To get more lucid and manageable equations only symmetric laminates will be considered. For

symmetric laminates, only certain combinations of n and m will appear together because the motion will
be symmetric or antisymmetric with respect to the 2- and 3-axes. Thus, there are four basic types of
wave propagation. Extensional wave propagation is symmetric with respect to both the 2- and 3-axes.
Bending around the 2-axis is antisymmetric with respect to that axis and symmetric with respect to the
3-axis, and vice-versa for bending around the 3-axis. Twisting, ®nally, is antisymmetric with respect to
both axes. Twisting motion will not be treated here because the sources that are considered in the
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examples excite twisting through warping of the cross-section only, and hence, the motion due to
twisting will generally be small.

In truncation of the series (9), use will also be made of the fact that the present work is concerned
with thin beams, that is beams for which the width 2b is much larger than the thickness 2h. In thin
beams the stress s33 will be small, at least for long wavelengths, and therefore, terms in the series (9)
that have to do with lateral contraction in the 3-direction are omitted. Instead it is assumed that the
material in the beam is under at state of plane stress. Hence, ply p follows the constitutive relation266664

s p
11

s p
22

s p
23

s p
13

s p
12

377775 �
266664
c
p
11 c

p
12 0 0 c

p
16

c
p
12 c

p
22 0 0 c

p
26

0 0 c
p
44 c

p
45 0

0 0 c
p
45 c

p
55 0

c
p
16 c

p
26 0 0 c

p
66

377775
266664
E p
11

E p
22

E p
23

E p
13

E p
12

377775, �10�

where the ply sti�nesses c pij are related to the sti�ness tensor components for the ply, Cp
ijkl, in the

following manner

c
p
11 � C

p
1111 ÿ

�C p
1133�2

C
p
3333

, c
p
12 � C

p
1122 ÿ

C
p
1133C

p
2233

C
p
3333

, c
p
22 � C

p
2222 ÿ

�C p
2233�2

C
p
3333

c
p
16 � C

p
1112, c

p
26 � C

p
2212, c

p
44 � C

p
2323

c
p
45 � C

p
2313, c

p
55 � C

p
1313, c

p
66 � C

p
1212: �11�

In order to decide which terms to keep in Eq. (9), ®nite element computations were performed. This was
done using the standard ®nite element code ABAQUS and a method for computing dispersion relations
described in an earlier work, AÊ berg and Gudmundson (1997). The ®nite element computations give
information about the dispersion relations and the corresponding wave forms. From the wave form of
the highest considered mode at relatively long wavelengths it is possible to decide which terms to keep in
the displacement expansion. In the present work, the two lowest modes will be modeled for each type of
wave propagation. Doing ®nite element computations to get wave forms requires the geometry and
materials to be speci®ed. A width to thickness ratio of b/h = 10 was chosen and di�erent material
combinations were investigated. Changing the width to thickness ratio drastically and possibly also
material properties will certainly change the conclusions, but a general treatment of this topic is beyond
the scope of the present work. It is believed that the chosen displacement assumptions can be justi®ed
for other width to thickness ratios fairly close to 10.

Before proceeding to the detailed analysis, the following notation is introduced. Integrals over the
thickness of the piecewise constant sti�ness cij (x3) and density r(x3) are given the notation

�Aij, Dij � �
�h
ÿh

cij�x3��1, x2
3�dx3 �12�

and

�P, I � �
�h
ÿh

r�x3��1, x2
3�dx3: �13�

The generalized beam forces resulting from Hamilton's principle are written as
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F
�n, m�
i �x1, t� �

�h
ÿh

�b
ÿb

fi�xj, t�Pn

�
x2

b

�
Pm

�
x3

h

�
dx2 dx3: �14�

3.1. Longitudinal motion

Based on the ®nite element computations the terms containing u (0,0)
1 , u (2,0)

1 and u (1,0)
2 are kept in the

expansion. Hamilton's principle and Eqs. (10)±(14) lead to the following equations of motion

2A11bu
�0, 0�
1, 11 � 2ZA12u

�1, 0�
2, 1 � F

�0, 0�
1 � 2Pb �u

�0, 0�
1

ÿ 2ZA12u
�0, 0�
1, 1 � 2

3A66bu
�1, 0�
2, 11 ÿ 2Z2A22b

ÿ1u�1, 0�2 � 2A66u
�2, 0�
1, 1 � F

�1, 0�
2 � 2

3Pb �u
�1, 0�
2

ÿ 2A66u
�1, 0�
2, 1 � 2

5A11bu
�2, 0�
1, 11 ÿ 6A66b

ÿ1u�2, 0�1 � F
�2, 0�
1 � 2

5Pb �u
�2, 0�
1

�15�

where the subscript ,1 and dot denotes derivation with respect to x1 and time, respectively. In order to
get a closer ®t to the dispersion curve from the ®nite element computations a correction factor is
introduced, similar to the work by Medick (1968) and Muller and Touratier (1981). The strain E22
resulting from the assumed displacements is replaced by ZE22, and the factor Z is then adjusted to
achieve the best possible ®t. The reason for choosing to correct the strain E22 is that it was found to
have the desired e�ect on the dispersion curves. See Section 5 for details regarding the correction factor.

3.2. Bending around the 2-axis

The ®nite element analyses showed that the terms containing u (0,1)
1 , u (2,1)

1 , u (1,1)
2 , u (0,0)

3 and u (2,0)
3 should

be included to model the two lowest modes of wave propagation with su�cient accuracy in this case.
The equations of motion resulting from Hamilton's principle are

2D11
b

h2
u
�0, 1�
1, 11 ÿ 2A55

b

h2
u
�0, 1�
1 ÿ 2A55

b

h
u
�0, 0�
3, 1 � 2

mD12

h2
u
�1, 1�
2, 1 � F

�0, 1�
1 � 2I

b

h2
�u
�0, 1�
1

2A55
b

h
u
�0, 1�
1, 1 � 2A55bu

�0, 0�
3, 11 � F

�0, 0�
3 � 2Pb �u

�0, 0�
3 ÿ 2

mD12

h2
u
�0, 1�
1, 1

ÿ 2

3
D66

b

h2
u
�1, 1�
2, 11 ÿ

�
2m2D22

bh2
� 2A44b

3h2

�
u
�1, 1�
2 � 2

D66

h2
u
�2, 1�
1, 1

ÿ 2
A44

h
u
�2, 0�
3 � F

�1, 1�
2 � 2Ib

3h2
�u
�1, 1�
2 ÿ 2

D66

h2
u
�1, 1�
2, 1 �

2

5
D11

b

h2
u
�2, 1�
1, 11

ÿ
�
6D66

bh2
� 2A55b

5h2

�
u
�2, 1�
1 ÿ 2

5
A55

b

h
u
�2, 0�
3, 1 � F

�2, 1�
1 � 2Ib

5h2
�u
�2, 1�
1

ÿ 2
A44

h
u
�1, 1�
2 � 2

5
A55

b

h
u
�2, 1�
1, 1 �

2

5
A55bu

�2, 0�
3, 11 ÿ 6

A44

b
u
�2, 0�
3 � F

�2, 0�
3 � 2

5
Pb �u

�2, 0�
3 : �16�

In Eqs. (16) a correction factor, m, has been introduced for the strain E22 in the same manner as in
Section 3.1. See Section 5 for details regarding m.

3.3. Bending around the 3-axis

Based on the ®nite element computations the terms containing u (1,0)
1 , u (3,0)

1 , u (0,0)
2 and u (2,0)

2 are used to
model the two lowest modes of wave propagation involving bending around the 3-axis. The resulting

M. AÊberg, P. Gudmundson / International Journal of Solids and Structures 37 (2000) 4083±4102 4089



equations of motion are

2

3
A11bu

�1, 0�
1, 11 ÿ 2

A66

b
u
�1, 0�
1 ÿ 2

A66

b
u
�3, 0�
1 ÿ 2A66u

�0, 0�
2, 1 � 2A12u

�2, 0�
2, 1 � F

�1, 0�
1 � 2

3
Pb �u

�1, 0�
1

ÿ 2
A66

b
u
�1, 0�
1 � 2

7
A11bu

�3, 0�
1, 11 ÿ 12

A66

b
u
�3, 0�
1 ÿ 2A66u

�0, 0�
2, 1 ÿ 2A66u

�2, 0�
2, 1 � F

�3, 0�
1 � 2

7
Pb �u

�3, 0�
1

ÿ2A66u
�1, 0�
1, 1 � 2A66u

�3, 0�
1, 1 � 2A66bu

�0, 0�
2, 11 � F

�0, 0�
2 � 2Pb �u

�0, 0�
2

ÿ 2A12u
�1, 0�
1, 1 � 2A66u

�3, 0�
1, 1 �

2

5
A66bu

�2, 0�
2, 11 ÿ 6

A22

b
u
�2, 0�
2 � F

�2, 0�
2 � 2

5
Pb �u

�2, 0�
2 :

�17�

For this type of motion no correction factors are introduced.

4. Asymptotic solution

The equations of motion are solved using Fourier transforms in time and length coordinates. The
formal solution is approximately inverted using residue calculus and the stationary phase method.

4.1. Fourier transform

The following transform pairs for space and time, with transform variables x and o, are applied to
the equations of motion (15)±(17) (the subscript in x1 will be dropped for convenience)

ĝ�x, t� �
�1
ÿ1

g�x, t�eÿixx dx, g�x, t� � 1

2p

�1
ÿ1

ĝ�x, t�eixx dx, �18�

g��x, o� �
�1
ÿ1

g�x, t�eiot dt, g�x, t� � 1

2p

�1
ÿ1

g��x, o�eÿiot do: �19�

The resulting algebraic equations can be summarized using a matrix, K, containing the sti�nesses Aij and
Dij, a matrix, M, containing the inertia factors P and I, the vector fÃ �, which has the transformed
generalized beam forces F̂

��n, m�
i as its elements and the vector uÃ � containing the transformed

displacement û
��n, m�
i : The result is

�K�x� ÿ o2M� Ãu� � Ãf
��x, o�: �20�

The homogeneous version of (20) de®nes an eigenvalue problem, and since the matrices K and M are
Hermitian, it has p real eigenvalues, o 2

n, and generally complex eigenvectors, vn. The eigenvectors are
normalized such that

vH
n Kvn � o2

n, �21�

vH
n Mvm � dmn, �22�

where dmn is Kronecker's delta and the superscript `H' denotes transpose and complex conjugation.
Using relations (21) and (22) and Eq. (20) the transformed solution uÃ � can be written as
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Ãu��x, o� �
Xp
n�1

vH
n �x�Ãf

��x, o�
o2

n�x� ÿ o2
vn�x�: �23�

To get the time response at a certain position this expression has to be inverted using Eqs. (18) and (19).

4.2. Approximate inversion

The inversion of (23) is done approximately. First, it is inverted with respect to x,

u��x, o� � 1

2p

Xp
n�1

�1
ÿ1

vH
n �x�Ãf

��x, o�
o2

n�x� ÿ o2
vn�x�eixx dx: �24�

For x>0, the integral may be evaluated in the complex plane by completing the integration path along
the real-axis with a semi-circle of in®nite radius in the complex plane, Im(x ) > 0. The integral along the
in®nite semi-circle will vanish, so (24) can be evaluated from residues of the poles, xk, of the integrand
in the upper complex plane. There will be poles with a non-vanishing imaginary part, but for large x
their contribution will be negligible compared to the contribution from poles on the real-axis.
Furthermore, for x > 0 only poles with positive group velocity give a contribution. Thus (24) can be
approximated by

u��x, o� � i
Xp
n�1

X
k

vH
n �xnk�Ãf

��xnk, o�
2on�xnk�cgn�xnk�

vn�xnk�eix
n
kx, �25�

where for a given mode n and value of o, the value, x n
k, is the kth x that satis®es all the following

conditions

Im�x� � 0, on�x� �2o, cgn�x� > 0: �26�
The group velocity, cgn, of mode n is given as

cgn � don

dx
: �27�

It should be observed that there are combinations of o and n for which no value of x satis®es the
conditions given by (26). In that case the contribution to the spectrum will be zero.

The Fourier inversion with respect to o of the spectrum (25) is formally de®ned from Eq. (19)

u�x, t� � i

2p

Xp
n�1

X
k

�1
ÿ1

vH
n �xnk�Ãf

��xnk, o�
2on�xnk�cgn�xnk�

vn�xnk�eit�x
n
k�x=t�ÿo� do: �28�

For the values of o for which a x n
k satisfying (26) exists, a variable transformation (o 4 x n) can be

performed using the conditions in (26) and Eq. (27). The result of the transformation is

u�x, t� � i

2p

Xp
n�1

�
Gn

vH
n �xn�Ãf

��xn, on�xn��
2on�xn� vn�xn�eit�x

n�x=t�ÿon�xn�� dxn, �29�

where Gn denotes the interval in x n which satis®es the conditions in Eq. (26). Since the displacement
vector u contains only real functions as its elements, the Fourier inversion in Eq. (28) may alternatively
be expressed in terms of an integral for positive o only. Hence, Eq. (29) may be rewritten as
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u�x, t� � ÿ 1

2p
Im

"Xp
n�1

�
G�n

vH
n �xn��Ãf

��xn�, on�xn���
on�xn��

vn�xn��eit�x
n��x=t�ÿo�xn��� dxn�

#
, �30�

where G+
n is the subset of Gn including x n+ corresponding to o> 0. The expression for the velocities u

.

may now easily be determined from Eq. (30),

Çu�x, t� � 1

2p
Re

(Xp
n�1

�1
ÿ1
�vH

n �xn��Ãf
��xn�, on�xn����vn�xn��eit�x

n��x=t�ÿo�xn��� dxn�
)
: �31�

If large values of t are considered the integrals in (30) or (31) can be asymptotically expanded using the
stationary phase method, see Borovikov (1994). The leading term of the expansion of Eq. (31) is

Çu�x, t� � 1

2
���
p
p Re

8<:XP
n�1

X
j

����������������
1

j o 00nj j t

s
�1ÿ sgn�o 00nj �i ��vH

nj
Ãf
�
nj �vnj eit�x

n�
j �x=t�ÿonj � �O�tÿ3=2�

9=;, �32�

where x n+
j are the values of x n+ that for a given ratio x/t satisfy

cgn�xn�� � x

t
: �33�

The subscript nj signi®es that the function should be evaluated at x n+
j . If the group velocity is

stationary, i.e. o0n=0 (or equivalently when two di�erent points x n+
j and x n+

j + 1 coincide), the expansion
in (32) is no longer valid. Close to such points a re®ned expansion, which involves the Airy function and
its derivative, has to be used. Details may be found in the book by Borovikov (1994), which also
presents criteria for changing between the re®ned expansion and expression (32).

5. Examples

A symmetric cross-ply ([90/0290]) with ply properties given in Table 1 is considered. The width to
thickness ration, b/h, is set to 10. Fig. 2 shows calculated dispersion curves for this laminate.

The squares correspond to values for bending around the 2-axis obtained by ®nite elements. The solid
curves close to the squares are the two lowest dispersion curves (labeled B2-1 and B2-2) resulting from
the equations of motion (16) with the correction factor m=0.82. The dashed curve close to the squares
of the second mode shows the dispersion relation without a correction factor or in other words with
m=1 (for the lowest mode the dashed curve and the solid curve are on top of each other). The triangles
show ®nite element values for bending around the 3-axis. The solid curves close to the triangles are the
two lowest dispersion curves (labeled B3-1 and B3-2) given by the equations of motion of Section 3.3,
that is Eq. (17). Circles show ®nite element results for extensional motion. The curves close to the circles

Table 1

Properties of the glass ®ber reinforced epoxy ply

EL ET nLT nTT GLT r
(GPa) (GPa) (GPa) (kg/m3)

46 18 0.29 0.42 7.9 1930
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show the dispersion relations for the two lowest modes (the lowest labeled E) obtained from the
equations of motion in (15). For the solid curves the values of the correction factor was Z=0.87, and
the dashed curves show the dispersion curves for Z=1.

According to the ®nite element computations, the second optical modes (not shown) start at a value
of about 2.6, 3.9 and 2.6 in the diagram for bending around the 2-axis, bending around the 3-axis and
extension, respectively. Therefore, a maximum circular frequency

omax � 2:5

�����������
EL=r
p

2b
, �34�

is used in the computations. This corresponds to adding a fourth condition to Eq. (26), namely

on�x� < omax : �35�
Fig. 3 shows the dimensionless group velocity, cg

�����������
r=EL

p
, versus dimensionless frequency according to

the equations of motion derived in Section 3. The solid, long dashed and short dashed curves
correspond to extension (E), being around the 3-axis (B3-1 and B3-2) and bending around the 2-axis
(B2-1 and B2-2), respectively. This diagram is helpful in analyzing the calculated time-responses.

5.1. Fiber fracture

The generalized beam-forces for the ®ber fracture case are found by inserting the volume forces of Eq.
(4) in the integral (14). The result is

Fig. 2. Dimensionless frequency versus dimensionless wavenumber for a [90/02/90] laminated beam with b/h=10. The symbols are

®nite element results, and the curves result from the derived beam model with (solid) and without (dashed) correction factors. The

shading marks the maximum frequency considered in Fourier inversion. The labels E, B2 and B3 mark the modes associated with

extension and bending around the 2- and 3-axes, respectively.
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F
�n, m�
1 � ÿM11�t�d 0�x1�Pn

�
bf

b

�
Pm

�
hf

h

�
,

n � 0, . . . , 3
m � 0, 2

F
�1, m�
2 �M22�t�d�x1�

b
Pm

�
hf

h

�
, m � 0, 1

F
�2, 0�
2 �M22�t�3bfd�x1�

b2

F
�0, 0�
2 � F

�0, 0�
3 � F

�2, 0�
3 � 0, �36�

where prime denotes derivation. The assumed properties of the glass ®bers and the epoxy matrix are
given in Table 2. Using rule of mixtures, see for example Gibson (1994), and the known value of
longitudinal modulus, EL, or the density, r, the values of Table 2 give the ®ber volume fraction,
Vf=0.6. The ratio between ®ber diameter and width is set to a typical values r/b = 5 � 10ÿ4. The
position of the ®ber fracture is set to hf=h/4, bf=b/2, and the strain, �E1, is assumed to have the value
2%. It is also assumed that the fracture takes place during the time t � 2r=

������������
Ef=rf

p
: Using the method

described in Section 4 it is possible to calculate the velocity, u
.
, as a function of time at a given position,

xi, for su�ciently large x1. Figs. 4±6 show the velocities u
.
1, u

.
2 and u

.
3, respectively, of the upper right

corner (x2=b, x3=h ) at x1=100b as a function of time. In Figs. 4 and 5 the labeled arrows mark the
arrival of the di�erent types and modes of wave propagation. Their arrival times are easily calculated

Fig. 3. Dimensionless group velocity versus dimensionless frequency for a [90/02/90] laminated beam with b/h = 10. Curves for

wave propagation associated with extension (solid), bending around the 3-axis (long dashed) and bending around the 2-axis

(dashed) are shown.
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from the maximum group velocities of the modes, which can be read from the curves in Fig. 3. The
extension and bending around the 3-axis do not contribute directly to the vertical velocity, u

.
3, and

therefore, only the arrival of the ®rst and second modes of bending around the 2-axis are shown in
Fig. 6.

5.2. Matrix cracking

In this section the generalized beam forces of Section 3 are derived for a transverse surface matrix
crack in the top 908-ply. The beam is assumed to be loaded to a strain �E1 in the 1-direction.
Disregarding edge e�ects, this strain gives the following stress in the 908-plies.

�s90
^

1 �
E 2

LET � �1ÿ 2n2LT�ELE
2
T

�EL ÿ ETn2LT��EL � ET�
�E1: �37�

The static crack opening displacement can be estimated using the fact that the beam is much wider than

Table 2

Properties of the glass ®ber (f) and the epoxy matrix (m)

Ef nf rf Em nm rm
(GPa) (kg/m3) (GPa) (kg/m3)

73 0.22 2492 4.0 0.35 1120

Fig. 4. Horizontal velocity in the 1-direction of the corner x2=b and x3=h at x1=100b due to ®ber fracture. The labeled arrows

mark the arrival of the extensional wave (E), the second and ®rst modes of bending around the 3-axis (B3-2 and B3-1) and the ®rst

and second modes of bending around the 2-axis (B2-1 and B2-2).
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it is thick. The crack is thus in a state of generalized plane strain. Referring back to the discussion in
Section 2.1, the static crack opening of the surface crack is taken to be (Wu and Carlsson, 1991),

Dustat�Z� � h���
2
p �1ÿ n2TT�

ET

�s90
^

1

���
Z
p �a1 � a2Z� a3Z2 � a4Z3�, �38�

where the dimensionless coordinate Z is de®ned by the relation

x3 � h

2
�Z� 1�, �39�

and

a1 � 4:486, a2 � ÿ0:7635, a3 � 0:3453, a4 � 0:0456: �40�
The insertion of (38) in (3), and subsequently in (14), gives the following generalized beam forces

F
�n, 0�
1 � ÿ0:9878C T

1111d
0�x1�gn�t�h2 �s90

^

1

�1ÿ n2TT�
ET

, n � 0, . . . , 3

F
�m, 1�
1 � ÿ0:7876C T

1111d
0�x1�g0�t�h2 �s90

^

1

�1ÿ n2TT�
ET

, m � 0, 2

Fig. 5. Horizontal velocity in the 2-direction of the corner x2=b and x3=h at z1=100b due to ®ber fracture. The labeled arrows

mark the arrival of the extensional wave (E), the second and ®rst modes of bending around the 3-axis (B3-2 and B3-1) and the ®rst

and second modes of bending around the 2-axis (B2-1 and B2-2).
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F
�n, 0�
2 � 0:9878C T

1122d�x1�gnÿ1�t��2nÿ 1�h
2

b
�s90

^

1

�1ÿ n2TT�
ET

, n � 1, 2

F
�1, 1�
2 � 0:7876C T

1122d�x1�g0�t�
h2

b
�s90

^

1

�1ÿ n2TT�
ET

; F
�0, 0�
2 � 0

F
�0, 0�
3 � F

�2, 0�
3 � 0: �41�

The prime denotes derivation and the functions g are given by

g0�t� �
8<: 0 t < 0
vt 0RtR2b=v
2b t > 2b=v

, �42�

g1�t� �
8<: 0 t < 0
�v2t2 ÿ 2bvt�=�2b� 0RtR2b=v
0 t > 2b=v

, �43�

Fig. 6. Vertical velocity of the corner x2=b and x3=h at x1=100b due to ®ber fracture. The labeled arrows mark the arrival of the

®rst and second modes of bending around the 2-axis (B2-1 and B2-2).
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g2�t� �
8<: 0 t < 0
vt�v2t2 � 2b2 ÿ 3bvt�=2b2 0RtR2b=v
0 t > 2b=v

, �44�

g3�t� �

8>>><>>>:
0 t < 0

5v4t4

3b3
ÿ 5v3t3

2b2
� 3v2t2

b
ÿ vt 0RtR2b=v

0 t > 2b=v

: �45�

The average velocity of the propagating surface crack, v, is set to 0:1
�����������
EL=r
p

: For the material considered
this translates to 488 m/s. The value of the strain, �E1, is set of 0.6%, in accordance with experiments
performed on the material by Adolfsson and Gudmundson (1999).

Figs. 7±9 show the velocities u
.
1, u

.
2, and u

.
3, respectively, of the upper right corner of the beam (x2=b,

x3=h ) at x1=100b as function of time. In Figs. 7 and 8 the labeled arrows mark the arrival of the
extension wave (E), the fast and slow waves associated with bending around the 3-axis (B3-2 and B3-1),
the fast and slow waves associated with bending around the 2-axis (B2-1 and B2-2). The extensional and
bending around the 3-axis waves do not contribute directly to the vertical speed, u

.
3, and therefore, only

the arrival of the fast and slow bending around the 2-axis waves are shown in Fig. 9.
Matrix cracking is a very slow event compared to ®ber fracture. This means that the distance from

the source to the observation point has to be approximately x= 1000b for the stationary phase method

Fig. 7. Horizontal velocity in the 1-direction of the corner x2=b and x3=h at x1=100b due to matrix cracking. The labeled arrows

mark the arrival of the extensional wave (E), the second and ®rst modes of bending around the 3-axis (B3-2 and B3-1) and the ®rst

and second modes of bending around the 2-axis (B2-1 and B2-2). The ordinary wave equation was in this case used to compute the

response from extensional motion (dashed).

M. AÊberg, P. Gudmundson / International Journal of Solids and Structures 37 (2000) 4083±41024098



to be accurate for the extensional wave in the case of matrix cracking. Therefore, the extensional motion
is, in this case, modeled by assuming constant displacement of the cross-section in the 1-direction, plane
strain in the 2-direction and plane stress in the 3-direction. This leads to the ordinary wave equation
which does not exhibit dispersion. The resulting velocity in the 1-direction of the cross-section can be
seen as the dashed square pulse in Fig. 7. This pulse has not been subjected to the ®lter described by
Eq. (35). The simpler model does not give any explicit motion in the 2- and 3-directions and therefore,
there is no response from extension motion in Figs. 8 and 9.

6. Discussion

The present modeling of transient wave motion resulting from ®ber fracture and matrix cracking has
two separate parts. The ®rst part, which is independent of the second, is concerned with modeling of the
sources. Questions could be raised regarding the speci®c time functions, Jf and Jm, used, but answers
based on experiments are hard to provide because of the small time and length scales involved. More
re®ned techniques for ®nding the static opening of the matrix crack and fractured ®ber could also, as
suggested, be used, but considering the level of approximation involved in the modeling of wave
propagation and time dependence of the sources it is not crucial. In reality a damage event may also
include combinations of the mechanisms modeled here. Fracture of a single ®ber may for example
initiate fracture of ®bers around it resulting in a response with larger amplitude and longer duration.
The model presented here is linear, so the total response from several events, or sources, can be
obtained by superposition of the individual contributions.

Comparing the dispersion curves from ®nite element computations and the developed beam models,

Fig. 8. Horizontal velocity in the 2-direction of the corner x2=b and x3=h at x1=100b due to matrix cracking. The labeled arrows

mark the arrival of the second and ®rst modes of bending around the 3-axis (B3-2 and B3-1) and the ®rst and second modes of

bending around the 2-axis (B2-1 and B2-2).
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the use of the beam models for the considered example seems justi®able up to the circular frequency
given by Eq. (34). For a typical specimen this translates to a frequency of 50 kHz. At this frequency, the
model B2-1 has the shortest wavelength, and it is approximately half the beam width. The generalized
beam forces derived show that many modes of wave propagation of appreciable amplitude are excited
by ®ber fracture and matrix cracking. The time dependence of the beam forces also show that matrix
cracking, as modeled here, is a slow process compared to ®ber fracture. The main parameter in the time-
dependence is the time it takes for the damage to fully develop. That is 2b/v for the matrix crack and t
for the ®ber fracture. This time governs how fast the Fourier transform decreases with respect to
frequency, and frequencies higher than frequencies of the order of the inverse of this time will mainly
in¯uence the details of the growth behavior. It may, therefore, be argued that there is a mismatch in the
modeling of the response from matrix cracking. The time dependence of the source can be modeled with
con®dence for frequencies lower than approximately 0:1�2b�ÿ1 �����������

EL=r
p

, whereas the wave propagation is
modeled up to a circular frequency of 2:5�2b�ÿ1 �����������

EL=r
p

, thus in the case of matrix cracking a simpler
beam model, as indicated in the last paragraph of Section 5, may be su�cient. This is not the case for
®ber fracture because the relevant frequency in this case is approximately 200�2b�ÿ1 ����������

El=r
p

:
The method used to solve the equations of motion approximately, Fourier transforms and inversion

by residue-calculus and the stationary phase method, is fast and involves very few numerical di�culties.
The only complication being stationary values of the group velocity, cg, which are found on the E and
B3-1 mode curves (see Fig. 3). As discussed earlier, a re®ned version of the expansion in Eq. (32) has to
be used for such points. A limitation of the inversion method used is that the time, or equivalently the
distance from the source, has to be large.

The time response curves for ®ber fracture (Figs. 4±6) show fairly even amplitudes. The
discontinuities seen in the curves are due to the unphysical sharp `®lter' of Eq. (35). The relatively sharp

Fig. 9. Vertical velocity of the corner x2=b and x3=h at x1=100b due to matrix cracking. The labeled arrows mark the arrival of

the ®rst and second modes of bending around the 2-axis (B2-1 and B2-2).
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peak at the beginning of the signal in Fig. 4 corresponds to the stationary group velocity of the
extensional wave. In Fig. 5 there is a less pronounced peak corresponding to the stationary value of the
group velocity in the dispersion relation of the B3-1 mode. The velocity of lateral contraction in the 2-
direction is seen as a component of the signal in Fig. 5. Its amplitude is approximately constant and can
be seen uninterfered until the B3-2 mode appears. The amplitude is close to 5� 10ÿ12 in the diagram. It
is reasonable that lateral contraction velocity in the 3-direction is approximately 1/10 of that value,
because of the ratio between height and width. Looking at the amplitude of the signal in Fig. 6 it seems
justi®able to neglect the vertical velocity due to lateral contraction.

The amplitudes of the time response due to matrix cracking (Figs. 7±9) are roughly 5 � 106 times
larger than the amplitude from a single ®ber fracture. The time response due to matrix cracking also
show more variation in amplitude. In Fig. 8 a sharp peak in the amplitude corresponding to the
stationary value of the group velocity in the B3-1 curve can be seen. The e�ect of dispersion is also
evident in Fig. 8 for this mode at least until the arrival of the B2-2 mode interferes with the signal. The
low frequencies travel slower for the B3-1 model.

Some of the results presented here can be useful in understanding acoustic emission experiments. For
example, this work shows that many di�erent modes of propagation are excited on the beam level by a
damage event. Also, the relative amplitudes of the di�erent modes and types of wave propagation can
be estimated. There are however, complications if one wants to use the present method to predict time
signals of an acoustic emission experiment. The inversion technique used requires distances from the
source that normally are larger than the length of typical specimens. This could be alleviated by
inverting Eq. (23) numerically. The maximum typical frequency modeled in this work is around 50 kHz
which must be considered low compared to the frequencies recorded in experiments. A remedy could be
to use a plate or three-dimensional model instead. Re¯ections from the ends of the specimen is also seen
in acoustic emission experiments. A more complete model should also include that feature.

7. Conclusions

Based on the present work it is concluded that many di�erent modes of propagation are excited by
matrix cracking and ®ber fracture in a thin laminated beam. Far away from the source, where it is
reasonable to assume that the specimen behaves as a beam, matrix cracking is a low frequency event.
Typically important frequencies are less than 10 kHz. Fiber fracture on the other hand is associated
with high frequencies. The ®t between dispersion relations from ®nite element analyses and the beam
theory indicates that a laminated beam model can be used to model the behavior of the beam up to the
frequency of the lowest mode not modeled in the assumed displacement ®eld. Inverting the Fourier
transformed equations of motion by residue±calculus and the method of stationary phase limits the
applicability of the method presented.
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